
ImgKnock: Novel Knockoff Inference for Image Data
via Latent Representation Learning

Zhe Fei, Jericho Lawson

University of California, Riverside
Department of Statistics

Dec 14th, 2024

Zhe Fei (UCR) ImgKnock Dec 14th, 2024 1 / 48



Overview

1 Motivations
Glaucoma Detection
Inference with Image Data

2 Introduction
Knockoffs

3 Proposed Methods
Notations
ImgKnock Procedure

4 Numerical Experiments
MNIST Data
Simulations
CIFAR-10 Data
Glacuoma Data

5 Summary
Next Steps

Zhe Fei (UCR) ImgKnock Dec 14th, 2024 2 / 48



Overview

1 Motivations
Glaucoma Detection
Inference with Image Data

2 Introduction

3 Proposed Methods

4 Numerical Experiments

5 Summary

Zhe Fei (UCR) ImgKnock Motivations Dec 14th, 2024 3 / 48



What is Glaucoma?

Glaucoma is a group of eye diseases that damage the optic nerve,
crucial for good vision.

Glaucoma is one of the leading causes of blindness for people over the
age of 60, second leading cause of blindness worldwide.
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In the U.S.

Over 3 million Americans have glaucoma.

It is estimated that half of them are unaware they have the disease.

Approximately 120,000 Americans are blind from glaucoma,
accounting for 9-12% of all cases of blindness.

In U.K.,

Over 700,000 people in the UK have glaucoma.

The number of people living with glaucoma in the UK is expected to
increase by approximately 18% over the next decade.

Glaucoma care accounts for an estimated 20% of hospital eye service
outpatient workload in the UK, with over 1 million glaucoma-related
outpatient visits each year.
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Importance of Fundus Imaging

Fundus imaging is a crucial diagnostic tool in ophthalmology for
visualizing the interior surface of the eye.
It helps in detecting and monitoring diseases such as glaucoma,
diabetic retinopathy, and macular degeneration.
The fundus includes the retina, optic disc, macula, and posterior pole.

Figure: Normal vs. Glaucoma fundus images.Zhe Fei (UCR) ImgKnock Motivations Dec 14th, 2024 6 / 48



Fundus Images in Glaucoma Diagnosis

Optic Disc Cupping: Enlargement of the optic cup relative to the
optic disc is a key indicator of glaucoma.

Neuroretinal Rim: Thinning of the neuroretinal rim, especially at the
inferior and superior poles, suggests glaucomatous damage.

Blood Vessel Changes: Displacement or bending of blood vessels
around the optic disc can indicate increased intraocular pressure.

Parapapillary Atrophy: Loss of retinal tissue around the optic disc,
known as parapapillary atrophy, is often seen in glaucoma.
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Deep Learning in Glaucoma Detection

Automated Diagnosis: Deep learning algorithms can automatically
analyze fundus images to detect signs of glaucoma.

High Accuracy: Convolutional Neural Networks (CNNs) have shown
high accuracy in distinguishing between normal and glaucomatous
eyes.

Feature Extraction: These models can learn complex features from
fundus images, such as optic disc cupping, neuroretinal rim thinning,
and blood vessel patterns.

Early Detection: Early detection of glaucoma through deep learning
can lead to timely intervention and better management of the disease.
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CIFAR10 Image Classification

Take the CIFAR-10 dataset [5] for example,
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Image Classification

Well-established problem
Goal: Identify the type of image based on given image data

▶ Originates from pixel data containing opacities of colors

Examples: letters from English alphabet, main object in images,
occurrence of disease

Figure: Two Images from CIFAR-10 Dataset [5]
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Image Features

Pixels could be treated as features
▶ Issues: object of interest not always in consistent spot, data-driven

Solution: Use of latent features through latent representation
learning (Self-Supervised Learning)

▶ Advantages: more data-driven, can pick up high level traits, such as
optic disc cupping, neuroretinal rim thinning, and blood vessel patterns.
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Feature Importance and Selection

Use of p-values or confidence intervals to determine significance of a
feature/variable

▶ Usually with assumptions on test statistic
▶ Prone to p-hacking
▶ Control of false discovery rate is not a guarantee

Benjamini-Hochberg correction, Family-wise error rate

Need a procedure that is data-driven, guarantees control of false
discovery rate when looking at all variables at once, and is robust in
high-dimensional settings

▶ Solution: Knockoffs Inference
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What are Knockoffs?

Framework for controlling false discovery rate when performing
variable selection, developed by Barber and Candes in 2015 [1]

▶ Candes et al. (2018): model-X knockoffs [3]
▶ Barber and Candes (2019): model-X knockoffs for high-dimensional

linear models [2]
▶ Romano, Sesia, & Candes (2019): model-X knockoffs with deep

implementation [6]

Use of negative controls
▶ Synthetic variables (conditionally independent on Y given X and

sharing same correlation structure)
▶ Used in conjunction with original variables in variable selection

procedure
▶ True significance occurs when difference between original and knockoff

variables exists
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Knockoff Generation

For X̃ to be valid knockoffs of X ,

i) (X , X̃ )
d
= (X , X̃ )swap(S) ∀S ⊂ {1, . . . , p}.

ii) X ⊥ X̃ |Y .

For example, suppose that X ∼ N(0,Σ), then i) becomes

(X , X̃ ) ∼ N (0,G ), where G =

[
Σ Σ− diag{s}

Σ− diag{s} Σ

]
.
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Second-Order Knockoffs

Instead of asking the swap property i), require the first two moments
to be equivalent:

E (X ) = E (X̃ )

cov(X , X̃ ) = G, where G =

(
Σ Σ− diag{s}

Σ− diag{s} Σ

)
Find s through convex optimization
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Knockoff Procedure

The statistics Wj ’s need to satisfy the flip-sign property: swapping
the j-th variable with its knockoff has the effect of changing the sign
of Wj .

Run a model on Y ∼ (X , X̃ ),
▶ e.g. least-squares linear regression, random forest, etc.

Pick appropriate feature importance metric (denoted as Zj)
▶ e.g. absolute value of coefficients, Gini impurity

Find an antisymmetric function between the feature importance
metrics of the original and knockoff variables

▶ e.g. Wj = W (Zj , Z̃j) = Zj − Z̃j

Zhe Fei (UCR) ImgKnock Introduction Dec 14th, 2024 17 / 48



Knockoff Procedure

Given nominal FDR q, e.g. q = 0.10,

Calculate τ , a threshold for determining significance

τq = min

{
t > 0 :

1 + |{j : Wj ≤ −t}|
|{j : Wj ≥ t}|

≤ q

}
Classify variable j as significant if Wj > τq
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Knockoff Procedure

If variable is truly significant, importance metric should be strongly
different between original and its knockoff

Threshold τ is data-driven

Alternative to p-value and confidence interval approaches
▶ FDR can be properly controlled while taking the number of variables

into account
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Notations

(X,Y): original data (input and output) of size n × (p + 1)

X̃: knockoff data for X of size n × p

(X, X̃): combined data of size n × 2p

Z, Z̃: latent features (learned from original features)

S, S̃: scores of feature importance

Wj: knockoff statistic derived from antisymmetric expression of Sj
and S̃j for variable j
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Framework

Latent representation with image data

Generate knockoff data from latent features

Feature importance with knockoff filters

Make inferences on final model; interpret latent features

M1

M2

M3

M4
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Procedure with Latent Features

Generate latent features from the original pixel features via a
denoising autoencoder

▶ M1: model to convert noisy/original features to latent features

Initialize and create knockoff machines using latent features, which
can then be used to generate knockoffs of latent features

▶ M2: second-order and deep machines to generate knockoffs of latent
features

Use knockoff procedure to control FDR and run feature selection
using algorithm of choice

▶ M3: classification algorithm to run knockoff procedure and variable
selection

⋆ Logistic regression with LASSO penalty
⋆ Use of absolute value of β coefficients for S
⋆ Wj = Sj − S̃j

Use PCA and other dimension-reduction techniques to induce
interpretation of latent features

▶ M4: interpretation of latent features for understanding
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Generate Latent Features from Image DataM1

Use of a denoising autoencoder (DAE)

Add standard Gaussian noise to pixel values, with some scale factor
η ∈ [0, 1]

X ′ = X + ηϵ,

Choose architecture for encoding and decoding, which contains
mixture of convolution and normalization

▶ Adapted from Tarun Kumar [4]
▶ Narrow down to p′ latent features

Latent features can be used for knockoff generation
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Generate Knockoff Data from Latent FeaturesM2

Use of second-order and deep knockoff methodology
▶ Second-order: semidefinite construction with tolerance of 10−5

▶ Deep: 40 epochs with epoch length of 20; 32-node width;
(γ, λ, δ) = (1, 1, 1)

Second-order: Reliant on the first two moments being equivalent

Deep: Reliant on various scoring metrics

Feed latent features in to create knockoff machines
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Illustration of M1 and M2

Figure: Illustration of M1 and M2
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Run Feature Selection Using Some Algorithm and Knockoff FilterM3

Feed training data X into pre-created denoising models to get latent
features X ′

Feed training latent features X ′ to get knockoff latent features X̃

Use logistic regression with LASSO penalty on combined data (X , X̃ )

Use of absolute value of β coefficients for S

Wj = Sj − S̃j
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Feature Importance

Use of logistic regression with various penalties
▶ LASSO (L1), elastic, Ridge (L2)
▶ Sj = |βj |, S̃j = |β̃j |

Random forest
▶ Sj = mean decrease in impurity for some variable j

Boosting
▶ Sj = weight-based importance for variable j
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Knockoff Filter

Knockoff statistic is still calculated as difference of scores

Wj = Sj − S̃j

Remaining procedures are the same

Interpretation
▶ Use of PCA to identify strongest features
▶ Can decode features to generate encoded images
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Make Inferences on Final Model; Interpret Latent FeaturesM4

Interpret latent features and map to clinical features

Use of PCA on training latent features and knockoff latent features

Use decoder aspect of autoencoder to regenerate images from latent
features
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Latent Representation Learning
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MNIST Data

Figure: Conversion of MNIST Data from 28x28 (p = 784) to 20x20 (p = 400)

Original Xi ’s are 20× 20 grey scale images.

Zi ’s are latent feature vectors learned from Denoising Autoencoder (DAE), of
length 32.

Sample size N = 50, 000 for multi-class classification

Sample size N = 10, 000 for two-class classification
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CIFAR10

Original Xi ’s are 32× 32× 3 color images;

Latent Zi ’s are feature vectors of length 128, learned from DAE.
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Simulated Truth

Simulate latent features Zi ’s from the empirical distributions learned
from the MNIST or CIFAR10 data. Zi ∼ F̂Z ,MNIST or Zi ∼ F̂Z ,CIFAR10

Simulate true class labels following

pi =
exp(ZT

i β0)

1 + exp(ZT
i β0)

;

Yi = Binom(1, pi ),

where β0 is a fixed realization of a sparse vector. For example,
S0 = {j : β0

j ̸= 0}, and β0
j = ±1 for j ∈ S0.

Apply ImgKnock to the simulated datasets and evaluate the empirical
performances in terms of TP, FP, FDR, etc.
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Simulation 1 MNIST Data

Zi ∈ Rq, q = 32, N = 1000;

Zi ’s are i.i.d. bootstrap samples of the empirical latent features
learned from the MNIST data;

β0 with S0 = {4, 8, 12, . . . , 32} and 4 +1’s and 4 −1’s.

q 0.050 0.100 0.200 0.300 0.400 0.500 0.750

2nd TPR 0.000 0.000 0.380 0.620 0.680 0.860 0.880
FPR 0.000 0.000 0.027 0.173 0.255 0.391 0.482
FDR 0.000 0.000 0.073 0.247 0.342 0.480 0.543

Deep TPR 0.000 0.000 0.400 0.840 0.920 1.000 1.000
FPR 0.000 0.000 0.055 0.200 0.300 0.482 0.609
FDR 0.000 0.000 0.129 0.272 0.318 0.476 0.569
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Simulation 1 MNIST Data

Figure: ROC Curve for Situation #1
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Simulation 1 MNIST Data

Figure: Left: Cor(Xj , X̃j); Right: Cor(X1, X̃j).

Zhe Fei (UCR) ImgKnock Numerical Experiments Dec 14th, 2024 38 / 48



Simulation 2 CIFAR-10

Zi ∈ Rq, q = 128, N = 1000;

Zi ’s are i.i.d. samples of the multivariate normal distribution with
mean and covariance from the empirical latent features learned from
the CIFAR-10 data;

β0 with |S0| = 20, 10 +1’s and 10 −1’s.
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Simulation 2 CIFAR-10

Figure: Average FDR vs. Nominal FDR
for Simulation 2 with CIFAR-10 Data.

Figure: ROC Curve for Simulation 2 with
CIFAR-10 Data.
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Simulation 2 CIFAR-10

Figure: Distribution of Latent Means of 128 Features between two classes
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Simulation 2 CIFAR-10
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Figure: PCA of 128 Features between two classes
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Summary

We proposed ImgKnock, a novel framework for knockoff inference
with image data, via latent representation learning.

Our method can make inference with the latent endogenous features
of the images.

Knockoff feature generation and selection guarantees FDR control.

Next Steps:

Application to the fundus images for glaucoma detection.

Interpretation of latent features with glaucoma data.

Zhe Fei (UCR) ImgKnock Summary Dec 14th, 2024 44 / 48



Advantages of Deep Learning in Ophthalmology

Scalability: Deep learning models can be deployed across multiple
clinics and hospitals, providing scalable solutions for glaucoma
screening.

Efficiency: Rapid processing of large volumes of images, aiding in
faster diagnosis and management.

Integration with Clinical Practice: Deep learning tools can be
integrated with electronic health records (EHR) systems for seamless
workflow.
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Deep Knockoffs

Knockoff copy returned based on random mapping fθ and noise vector
V

X̃ = fθ(X ,V )

Scoring function J evaluates empirical distribution of (X , X̃ ),

J(X , X̃ ) = γJMMD(X , X̃ ) + λJsecond-order(X , X̃ ) + δJdecorrelation(X , X̃ )

▶ JMMD , maximum mean discrepancy;
▶ Jsecond-order, matching of the second moments of X and X̃ ;
▶ Jdecorrelation, penalize large pairwise empirical correlations between X

and X̃ .

Fit deep neural networks to obtain the knockoff machine f̂θ.
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Knockoff Procedure - Deep

Figure: Structure of Deep Knockoffs [6]
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